
* Copyright © 2003 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

96

LIMP: AN INTERPRETED PROGRAMMING LANGUAGE FOR

STUDENTS, PROFESSORS AND PROGRAMMERS*

STUDENT PAPER

William Hawkins
Furman University Department of Computer Science

Greenville, SC
william.hawkins@furman.edu

ABSTRACT

Based upon an investigation of current interpreted and compiled programming
languages, there exists a need for a new language with English-based keywords,
looping constructs, functions, data type morphing and arrays. This paper describes
a new language focused on these concepts: LIMP. To be useful, this new language
is aimed towards users ranging from students to system administrators. LIMP was
designed for ease of use and speed. This interpreted language was implemented in
the fall of 2002 and an overview of the implementation is given here. LIMP
succeeds by accomplishing all its design goals and executing programs at speeds
comparable to or better than established languages. The result is a language for
students of computer science and programmers of all skill levels.

1 INTRODUCTION

With computers increasing pervasiveness, computer science curriculum must be designed
with majors and non-majors in mind - this includes mathematicians, physicists, and
businesspeople who all make heavy use of computers. Recent college graduates in these and
many other fields are called upon to automate repetitive tasks using the computer. In most
undergraduate colleges, a computer science survey course is offered. This course usually covers

CCSC: Southeastern Conference

1LIMP is a recursively defined acronym for LIMP Is My Program.

97

word processing, databases, HTML and graphic design but cannot address all the possible
software combinations in use in industry today. By integrating a programming for
non-computer-science-majors course into undergraduate curriculum, students gain fundamental
insight into computer science that will benefit them as they undertake computer related tasks in
the workplace.

LIMP1, the new language designed by the author of this paper, is the tool for teaching
such a class. While C, C++ and Java are often too complex to teach basic programming
principles, LIMP is not. With its simple, English-based grammar, the concepts of programming
(looping, control structures, input/output) can be taught without getting bogged down in the
details of a particular programming environment. While the LIMP project was initially aimed at
those programmers in search of a multi-purpose development tool, it has evolved into something
that can be directly incorporated into undergraduate computer sciences courses. The initial goals
of the project can be found later in section 3.

LIMP is an interpreted language. An interpreted language is one in which programs are
executed immediately after it is parsed without generating any intermediate or object code. This
is the opposite of a compiled language where the high-level source code is compiled into object
code and then executed. The LIMP interpreter was designed from the outset for ultimate
portability. The C and C++ LIMP source code will compile on any system with a C++
compiler and support for the Standard Template Library. The interpreter was written and tested
on the Solaris operating system and was also compiled for testing under the Red Hat Linux
operating system.

The remainder of this paper has the following format: Section 2 describes other's
contributions to interpreted programming languages and how they impacted the design and
implementation of LIMP. Section 3 lists the original goals of the LIMP programming language.
Section 4 provides examples of tasks where LIMP would be the programmer's tool of choice.
Section 5 describes LIMP's design and implementation. Section 6 describes the results of the
benchmarks to compare LIMP's speed with that of other similar interpreted and compiled
languages. Section 7 describes how the interpreter will be improved in the future.

2 RELATED WORK

As computing time becomes less expensive and processor speeds increase, computer
scientists are becoming less concerned with the amount of time needed for algorithms to run,
and more concerned with high level language constructs that make algorithm implementation
easier. For this reason, many interpreted languages have been developed in the last 10 years
most, notably Perl, PHP and Python.

One of the first interpreted languages to gain widespread acceptance was Perl. Invented
in 1987, "Perl is a [sic] interpreted language optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on that information. It's also a good

JCSC 19, 3 (January 2004)

2"The Common Gateway Interface (CGI) is a standard for interfacing external
applications with information servers, such as HTTP or Web servers." [1]

98

language for many system management tasks."[4] Larry Wall, Perl's inventor, goes on to say
that Perl was designed to combine the best features of C, sed, awk and sh. Perl is now the
most popular interpreted programming language available for both the UNIX and Windows
operating systems. Because so many people use Perl, many enhancements have been made
over the years - most notably the support for object-oriented (OO) programming. While this
is important today as programmers rely heavily on OO support, it results in an interpreter with
more source code and slower response times for trivial programming tasks that do not require
OO support. Over the years Perl developers have adopted the mantra that there is always more
than one way to perform any operation. Unfortunately, not every method is fast or works the
way the programmer expects. Often this leads to longer development time and slower running
code. Since Perl was developed at the peak of C's popularity, many of the constructs in Perl
are similar to those in C and do not lend themselves to high levels of source code abstraction.
This makes Perl a difficult and intimidating language for novice programmers to learn and use.
Overall, Perl is a good language for rapidly prototyping complex applications, but is not as
impressive for smaller applications that need to run many times, as fast as possible. Section 6
shows a comparison of timing results between LIMP and Perl.

Riding Perl's coat tails, many similar languages were developed in the mid to late 1990s.
The most notable is PHP. "PHP is an HTML-embedded scripting language. Much of its syntax
is borrowed from C, Java and Perl with a couple of unique PHP-specific features thrown in.
The goal of the language is to allow web developers to write dynamically generated pages
quickly."[2] The language lives up to that description: its fast execution times have made it the
primary language at large Internet companies including Yahoo!. However, PHP is not good for
command line (or offline processing) work. It was designed as a web programming language,
and the more recent versions are geared towards that market. Similar to Perl, what started off
as a small set of CGI scripts2 has turned into an OO programming language. Finally, PHP's
syntax of combining executable statements into HTML (content markup) makes for very
unreadable program source code. Overall, PHP is an expressive language for dynamic web
content, but cannot be effectively used for offline processing, automation or command line
scripting.

Like Perl and PHP, Python is an interpreted language. Python combines innovative
programming language elements like exceptions and modules along with time-tested concepts
such as classes and dynamic data types. [8] As a standalone language, Python is good for
system administration tasks. However, according to the official Python website, the real power
of Python lies in its ability to interoperate with heterogeneous environments. [10] "When
augmented with standard extensions ... Python becomes a very convenient "glue" or "steering"
language ..." [10]

The author of [10] goes on to say that several packages make Python strong enough to
perform statistical calculations and even Fourier transforms. This seems like overkill for those

CCSC: Southeastern Conference

3BASH (Bourne Again SHell) is the GNU version of the original UNIX shell named sh.

99

who are attempting to do simple and fast file, text, or number manipulation. Among non-Python
programmers, there is a consensus that Python's syntax of indentation to create blocks of code
is cumbersome. Python programmers refute this by saying the transition to this style of
programming is easy and only takes a matter of hours.

There are many other similar languages, and some are more sophisticated than others. For
instance, Ruby [11] is becoming a popular choice for scripting. No matter how many different
scripting languages analyzed, the bottom line is that each language is designed to meet a specific
goal. Perl is for rapid prototyping. PHP is for web development, and Python is for steering the
interaction between multiple programs with easy to construct GUI components.

3 GOALS FOR LIMP

The goals of this language were set forth to fill a void left by current programming tools
and create a language without the limitations of those already available.

 • LIMP's syntax must be simple enough for novice programmer to learn quickly and robust
enough for the expert programmer. Using more time to learn the syntax of a language
leaves less time for the art of program design. With Perl and its C-like syntax, novice
programmers can get lost trying to create even a simple script.

 • LIMP must be relatively quick for all operations. This is not to say that all operations will
be fast, just that the execution time for all operations must be respectable. With the
languages detailed above and their support for OO constructs, the speed for simple
operations, such as the creation of arrays, suffers. In the results section (section 6), the
reader will notice that this is an area where our final product excelled in some areas and
lagged in others.

 • The language must support file input and output. Additionally, there must be easy
constructs to open file handles and either read from or write to them. In Perl, the construct
to open any kind of file handle is open The parameters differ depending on the way one
wants to access the file, and are very similar to the symbols used in bash3. In LIMP,
there are multiple constructs for opening files for read or write. This method makes it
easier for programmers to be sure they have opened the file properly and that they are not
going to accidentally overwrite important data by transposing a < with a >.

 • The language must have built-in constructs that scale. This means that the language must
have a small number of well-designed and well-implemented functions and constructs that
can be used to create other commonly used functions. By avoiding feature overload, the
programmer can ensure that the construct he is using is the fastest, cleanest way to
accomplish a task. As was mentioned in the description of Perl above, the multitude of
built-in constructs can lead to confusion about which is the easiest and fastest to use for
a given problem. In the case of PHP, the online references for the built-in functions are

JCSC 19, 3 (January 2004)

100

helpful, but can sometimes lead the programmer astray as to what is the proper function
or construct to use for a particular application.

 • The LIMP interpreter must be portable enough to support all architectures with an
available C++ compiler. If the tool is to be effective for the end programmer, the source
code must run regardless of machine type. The author must have the freedom to take a
program designed for one platform to another platform should the need arise.

 • The tool should support interaction with the operating system. A language is useless if it
cannot take advantage of operating system level functions.

4 MOTIVATING EXAMPLES

The primary goal of the project, as mentioned earlier, was to create a language for those
interested in learning the fundamentals of computer science. Besides this academic application,
there are also a number of ways a language like LIMP could benefit both novice and
experienced programmers. This section outlines a few of these. The source code corresponding
to these problems can be found in [5].

The Spreadsheet

In today's Microsoft-dominated desktop, most spreadsheets are created in Excel. While
good for organizing data, the ability to perform operations on certain subsets of data in Excel
is lacking. Written in the only programming language available, Visual Basic for Applications,
these calculations can be slow and cumbersome. However, with LIMP's built-in substring
operation, a number of standard functions, and easy access to files, these operations can be
performed quickly.

The Email List

As corporations and departments grow, email servers become outdated and must be
replaced. As a result, there exists a need to generate a new list of email addresses in the form
firstname.lastname@mailserver.example.com from a list of email addresses
in the form firstname.lastname@example.com. This seems like a trivial task, but the
tools are not available for such a simple translation: A Perl script could do the job, but having
a tool like LIMP, which is designed specifically for a task like this, would be ideal.

Shell Calls

Many tasks in the UNIX environment can be completed by making a series of shell calls
with varying parameters. An obvious choice for such a task would be a shell script. However,
as this programmer learned, using bash as a programming language is very difficult. Its
column-oriented parsing and mathematical versus text mode processing of statements is difficult
for many people to understand. However, with the system() call in LIMP, a shell call can

CCSC: Southeastern Conference

101

be executed and the output from that command can easily be stored in a variable for later
manipulation.

Web Pages

Today, more than ever, people who do not have programming skills are attempting to
publish dynamic World Wide Web homepages. Much to their chagrin, they must learn a
language like Perl, PHP or Python to create such a web site. These languages are too similar
to something like C (a real programming language) and offer little in the way of English based
constructs. In LIMP, the use of English words to replace cryptic symbols common in other
programming languages makes it easy for the non-programmer to create working scripts
quickly. Using the provided CGI include file, access to any of the functions of PHP, Perl or
Python designed for web site design are available to the LIMP programmer thereby creating
a convenient language for the novice programmer to create dynamic web content.

In these four examples, plus the overall goal described in the paper's introduction, the reader
can see there are plenty of practical applications for a niche language like LIMP.

5 DESIGN AND IMPLEMENTATION

The LIMP syntax is based partly on its C, C++ and Perl ancestors and partly on a theory
that English-based operators will make it easier for both experienced and novice programmers
to create working code that is self documenting. For a complete description of LIMP syntax,
please see [5]. The interpreter for this language was implemented in the fall of 2002 using C and
C++.

A complete description of the syntax and features of the language is beyond the scope of
this paper. However, it is important to note a few features that make LIMP a suitable choice
for classroom use.

Design and Features

 1. All LIMP variables must be declared before they can be used. Not only does this reduce
the risk of typos causing latent errors, but it also promotes good coding practices and
leads to self-documenting code.

 2. LIMP supports a single data type. Depending on the context of the operation, the data
type can represent an integer, double, float, boolean, or string. Operational contexts in
LIMP are straightforward so there is little possibility of inadvertently performing a
meaningless operation.

 3. LIMP supports arrays. To avoid problems with memory allocation, LIMP arrays are
dynamically sized, and bounds are always checked for validity before performing an

JCSC 19, 3 (January 2004)

102

access or write. This means that the formerly devastating off-by-one memory access error
will no longer crash user programs.

 4. LIMP supports functions. While most languages today support functions, LIMP's
functions can be used to emphasize the technique of modularization.

 5. LIMP supports various control structures. All LIMP control structures require { and }
braces to contain the code to be conditionally executed. While this may increase typing,
it has the advantage of minimizing mismatched if/else pairs and increasing code readability
by grouping logically related statements.

 • if ... else ... LIMP includes support for the standard if statement with unlimited
nesting.

 • while, do ... while LIMP includes support for a while, and do ... while loop.

 • foreach LIMP supports this looping structure for the express purpose of iterating
through all the entries in an array. The concept of a foreach loop is simple: iterate
through all entries in an array, assign the value from that entry into a
programmer-specified variable and then execute a block of code. Upon completion
of this block's execution, the process repeats for all the entries in the array.

 6. LIMP supports native access to environment variables. For every defined environment
variable, a identically named LIMP variable is created at program startup. Using the
built-in keyword defined, the programmer can determine which environment variables are
currently defined without worrying about referencing undeclared variables.

 7. LIMP supports include files. The obvious consequence of this capability is to encourage
code reusability and modularity.

 8. LIMP includes a built-in debugger. Executing a LIMP program within the debugger allows
the programmer to step the through the program and access variable contents. This simple
but powerful debugger will benefit both experienced programmers and students of
computer science.

Implementation

In the interest of space, implementation details of the LIMP interpreter have been omitted.
A detailed description of the code for the interpreter can be found in [5]. However, a brief
description of execution flow of the interpreter as a program is executed may help contextualize
the following quantitative results.

 1. The standard input and output channels are created.

 2. The scope where "main" variables will be stored is created and entered into the list of
active scopes.

 3. If this is a debugger instantiation, the debugger variables are initialized.

CCSC: Southeastern Conference

4The : is the null shell command. It can be compared to the empty statement ; in C.

103

 4. Command line arguments are checked and proper variable initialization occurs. LIMP
supports command line arguments to disable runtime warnings, specify a file to find LIMP
code to execute and print a helpful message about LIMP's usage.

 5. Control is passed to a yacc-generated parser. This parser relies on a flex generated
lexical analyzer to tokenize LIMP source code [3] [7] [6]. During this time, the code is
checked for syntax errors and converted into an execution tree. If any errors exist, they
are reported and the interpreter halts. Otherwise, the interpreter continues.

 6. The statements of the body of the program are compiled into an executable list and
interpreter control is passed to the program evaluation engine. If during execution run-time
errors occur, these errors are reported and the interpreter exits.

 7. Upon successful completion of program execution, the interpreter exits.

Student Opportunities

As well as a tool for teaching computer science to non-computer scientists, LIMP offers
excellent learning opportunities for advanced computer science students. The source code for
the interpreter is open and available upon request. The documentation contained in the source
code provides enough information for the interested programmer to make contributions. With
over 5000 lines of code, modifying the LIMP interpreter provides a great starting point for
students interested in compiler design. Specific suggestions for student work can be found in
the Future Work section.

6 RESULTS

In order to quantitatively judge the final product, a set of benchmarks was created. These
benchmarks were designed to judge LIMP's speed relative to established programming
languages, compilers and interpreters. For each of the five benchmarks, results were gathered
on a 250 MHz Sun4u machine running Solaris 5.8. In order to account for operating system
overhead, the amount of time to execute the :4 shell command from inside the timing program
using the system() function was included in the results tables. Therefore, the actual amount of
time to complete a benchmark can be inferred by subtracting the "Shell" time from the LIMP,
Perl or C++ execution times in the tables below. In certain examples where a benchmark
program was executed only once, the time to execute the : command was not included because
it did not significantly effect the total running time. The C++ benchmarks were compiled using
g++ and optimized with -O2. The full source code for the benchmark programs is in [5].

JCSC 19, 3 (January 2004)

104

The matrix multiplication operations take a non-trivial amount of time to complete in LIMP
because each value is stored as a C++ string; this string must be converted to a double before
an operation can be performed and then the result must be converted back to a string. The
substring operations in the Spreadsheet benchmark extract 30 characters from every line of a
30-megabyte file. Unfortunately, Perl results cannot be included for this benchmark. Perl's
peephole optimizer completely eliminates the call to the substring function in our benchmark
code. [9] The results from the Array benchmark prove an interesting point: the LIMP interpreter
is able to handle sparsely populated n-dimensional arrays faster than other interpreters because
of its underlying linked list implementation. The Function Class example shows that, calling and
executing a function in LIMP is fast relative to other interpreters.

Objectively viewing these results demonstrates that the LIMP interpreter satisfies the
design goal wherein all operations are interpreted relatively (to other languages) quickly.

7 FUTURE WORK

The most prominent interpreters today have been developed over a period of years. In
Perl's case, development started in the late 1980s. For PHP and Python, development started

CCSC: Southeastern Conference

5Based on informal tests, the LIMP interpreter will execute mathematical operations
up to 50% faster with this enhancement.

105

in the mid 1990s. LIMP development started in the fall of 2002. In addition to the areas of
possible improvement mentioned previously, there are other ways to improve LIMP:

Eliminate the String Object

The C++ string object is at the heart of all variables, operations and literals. The overhead
to carry around a complex class like this in so many structures slows down the interpreter.
Additionally, there are numerous calls to convert the string class object to a standard C string.
Therefore, if the string object can be changed to an array of characters, a significant amount of
memory would be saved by not transferring an entire object from place to place and a
significant time savings would result as calls to convert the C++ string object to a C String could
be removed.

Implement Database Connectivity

As more data is migrated to databases, a language must have the capability to read and
write from these data stores. LIMP needs this support. Initially support for the most popular
databases will be added e.g. MySQL. This support will come in the form of functions such as
mysql_connect() or mysql_query().

Improve Speed

The methods used to execute LIMP programs could be more efficient. With an extensive
audit of the source code, these problem areas can be identified and fixed to improve the overall
speed. Additionally, the string base for every variable, or valuable in LIMP causes mathematical
calculations to be slow (as noted in the matrix multiplication example in section 6). With the
addition of a double to store the current mathematical representation of the string in all
structures, repeated calls to atof() will be rendered unnecessary and an increase in speed
should follow5.

Remove Overflow Restrictions

Currently, a number in LIMP cannot be larger than 1x109. Since LIMP is primarily a
string based language, this is not a problem. However, as the general use of LIMP increases,
it may be used for mathematical calculations that require support for larger numbers than LIMP
currently allows.

JCSC 19, 3 (January 2004)

106

Socket Connections

The ability for a LIMP program to connect to network resources via handles is an
important future addition to LIMP. Since the handles were designed as a class, adding another
type of resource (network) should not cause a huge change in the interpreter source code.

Other Enhancements

Because every LIMP variable can be considered a scalar and an array, a special index
for every variable could be specified to hold information about the use of that variable. If LIMP
had the ability to preprocess source files and extract this information, a program's
documentation could be created automatically.

Users of the LIMP debugger will also benefit from increased access to behind-the-scenes
information. This insight into the interpreter will help programmers whose complex code is
infested with a subtle bug.

With any project, improvements can always be made. As people begin to use the
language, this list of future improvements will surely increase.

8 SUMMARY

This paper has provided a general overview of a new programming language named LIMP, its
uses and explicated possibilities for future work. This language features a simple syntax, support
for file I/O, and built-in scalable constructs. Besides the accomplishment of these subjective
goals, the quantitative results are promising. LIMP beat or rivaled other programming languages
in all but one benchmark category. The examples of uses for LIMP show that this language is
suitable for practical problem solving as well as for teaching the art and science of computing.
Overall, the accomplishment of the design goals, and combination of subjective and quantitative
results, shows that LIMP is a perfect tool for the classroom and industry. In the future this
author looks forward to continuing work on this project, and hopes to end up with a language
that programmers, non-programmers and teachers alike pick for the variety of problems they
encounter and courses they teach.

Appendix: LIMP Grammar
delim = [\t]
nl = [\n]
ws = {delim}+
non_digit_id_char = [_A-Za-z]
digit_char = [0-9]
v a r i a b l e _ i d e n t i f i e r =
\$({non_digit_id_char}|{digit_char})
+[0-9A-Z_a-z]*
r e g u l a r _ i d e n t i f i e r =
{non_digit_id_char}[0-9A-Z_a-z]*
comment = ("//"|"#"){1}.*$
s t r i n g _ l i t e r a l =
\"((\\\")|([^\"]))*\"

integer_literal =
-?[0-9]+[\.]?[0-9]*

INCLUDE = "include"
<<EOF>> /* Special end of file
denominator*/
OPEN_BRACE = "{"
CLOSE_BRACE = "}"
OPEN_PAREN = "("
CLOSE_PAREN = ")"
SEMI = ";"
COMMA = ","
EQUAL "="
TILDE = "~"
OPEN_BRACKET = "["

CCSC: Southeastern Conference

107

CLOSE_BRACKET = "]"
L I T E R A L =
{string_literal}|{integer_literal}
SUBSTR = "substr"
PRINT = "print"
READ = "read"
DATABASE = "database"
OPENR = "openr"
OPENW = "openw"
CLOSE = "close"
DECLARE = "declare"
FUNCTION = "function"
SYSTEM = "system"
RETURN = "return"
OR = "or"
AND = "and"
NOT = "not"
EQUAL_TO = "equal_to"
NOT_EQUAL_TO = "not_equal_to"
LESS_THAN = "less_than"
GREATER_THAN = "greater_than"
G R E A T E R _ T H A N _ O R _ E Q U A L =
"greater_than_or_equal"
L E S S _ T H A N _ O R _ E Q U A L =
"less_than_or_equal"
UNLESS = "unless"
DEFINED = "defined"
EOF = "eof"
IF = "if"
THEN = "then"
ELSE = "else"
DO = "do"
FOREACH = "foreach"
WHILE = "while"
ADD = "add"
SUBTRACT = "subtract"
MULTIPLY = "multiply"
DIVIDE = "divide"
MOD = "mod"
VAR_ID = {variable_identifier}
ID = {regular_identifier}
SYNTAX_ERROR = .

start_symbol : program start_symbol
|

block : program block

else_block : program else_block
 |

program : close_expr
| function_expr
| while_expr
| if_expr
| do_expr
| foreach_expr
| openr_expr
| openw_expr
| function_call_expr SEMI

| system_call_expr SEMI
| declare_expr
| ass_expr
| ass_expr_array
| ret_expr
| print_expr
| read_expr
| read_expr_array
| include

include : INCLUDE LITERAL SEMI

if_expr : IF OPEN_PAREN valuable
CLOSE_PAREN OPEN_BRACE evaluated_block
CLOSE_BRACE
| IF OPEN_PAREN valuable

CLOSE_PAREN OPEN_BRACE evaluated_block
C L O S E _ B R A C E E L S E O P E N _ B R A C E
evaluated_else_block CLOSE_BRACE

do_expr : DO OPEN_BRACE block
CLOSE_BRACE WHILE OPEN_PAREN valuable
CLOSE_PAREN SEMI

foreach_expr: F O R E A C H V A R _ I D
O P E N _ P A R E N V A R _ I D C L O S E _ P A R E N
OPEN_BRACE block CLOSE_BRACE

while_expr: W H I L E O P E N _ P A R E N
valuable CLOSE_PAREN OPEN_BRACE block
CLOSE_BRACE

function_call_expr: ID OPEN_PAREN
param_list CLOSE_PAREN

function_call_expr_return: I D
OPEN_PAREN param_list CLOSE_PAREN

system_call_expr: SYSTEM OPEN_PAREN
valuable CLOSE_PAREN

s y s t e m _ c a l l _ e x p r _ r e t u r n : S Y S T E M
OPEN_PAREN valuable CLOSE_PAREN

print_expr: PRINT ID valuable SEMI

read_expr: READ ID VAR_ID SEMI

read_expr_array: READ ID VAR_ID
evaluated_list SEMI

openr_expr: OPENR ID valuable SEMI

openw_expr: OPENW ID valuable SEMI

close_expr: CLOSE ID SEMI

function_expr: FUNCTION ID OPEN_BRACE
block CLOSE_BRACE

partial : partial COMMA valuable

JCSC 19, 3 (January 2004)

108

|

param_list : valuable partial
|

declare_expr: DECLARE var_id_list
SEMI

var_id_list : VAR_ID COMMA
var_id_list

| VAR_ID

index_list : O P E N _ B R A C K E T
valuable CLOSE_BRACKET index_list

|OPEN_BRACKET valuable
CLOSE_BRACKET

evaluated_else_block : else_block

evaluated_block : block

evaluated_list : index_list

ret_expr : RETURN valuable SEMI

ass_expr : VAR_ID EQUAL valuable SEMI

a s s _ e x p r _ a r r a y : V A R _ I D
evaluated_list EQUAL valuable SEMI

valuable : valuable TILDE and_expr
| and_expr ;

and_expr : and_expr AND or_expr
| or_expr ;

or_expr : or_expr OR
comparison_expr

| comparison_expr;

comparison_expr : comparison_expr
EQUAL_TO add_expr

| comparison_expr NOT_EQUAL_TO
add_expr

| comparison_expr LESS_THAN
add_expr

| comparison_expr GREATER_THAN
add_expr

| c o m p a r i s o n _ e x p r
LESS_THAN_OR_EQUAL add_expr

| c o m p a r i s o n _ e x p r
GREATER_THAN_OR_EQUAL add_expr

| add_expr ;

add_expr : add_expr ADD mult_expr
| add_expr SUBTRACT mult_expr
| mult_expr ;

mult_expr : mult_expr MULTIPLY
not_expr
| mult_expr DIVIDE not_expr
| mult_expr MOD not_expr
| not_expr ;

not_expr : NOT not_expr
| EOF ID
| DEFINED VAR_ID
| SUBSTR OPEN_PAREN last_resort COMMA

last_resort COMMA last_resort
CLOSE_PAREN
| last_resort;

last_resort :
function_call_expr_return

| system_call_expr_return
| VAR_ID
| VAR_ID index_list
| last_resort OPEN_BRACE

valuable CLOSE_BRACE
| LITERAL
| OPEN_PAREN valuable

CLOSE_PAREN

REFERENCES

[1] CGI: Common Gateway Interface. http://hoohoo.ncsa.uiuc.edu/cgi/intro.html, -.

[2] PHP Manual. http://www.php.net/manual/en/preface.php, 2002.

[3] Alfred V. Aho. Compilers: Principles, Techniques and Tools. Reading, Mass:
Addison-Wesley, 1986.

[4] Elaine Ashton. The Timeline of Perl and its Culture.
http://history.perl.org/PerlTimeline.html, 2001.

CCSC: Southeastern Conference

109

[5] William Hawkins. The Implementation and Uses of LIMP .
http://cs.furman.edu/~whawkins/Research-final.ps, 2002.

[6] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler.
http://dinosaur.compilertools.net/lex, -.

[7] M. E. Les and E. Schmidt. Lex - A Lexical Analyzer Generator.
http://dinosaur.compilertools.net/lex, -.

[8] Guido Van Rossum. What is Python?
http://www.python.org/cgi-bin/faqw.py?req=show&file=faq01.001.htp, 1997.

[9] Sriram Srinivasan. Advanced Perl Programming. O' Reilly, 1997.

[10] Aaron Watters. What is Python good for?
http://www.python.org/cgi-bin/faqw.py?req=show&file=faq01.017.htp, 1997.

[11] Yukihiro Matsumoto. What's Ruby. http://www.ruby-lang.org/en/20020101.html, 2002.

