LIMP: AN INTERPRETED PROGRAMMING LANGUAGE FOR

STUDENTS, PROFESSORS AND PROGRAMMERS®

STUDENT PAPER

William Hawkins
Furman University Department of Computer Science
Greenville, SC
william.hawki ns@fur man.edu

ABSTRACT

Based upon an investigation of current interpreted and compiled programming
languages, there exigts a need for a new language with English-based keywords,
looping congtructs, functions, datatype morphing and arrays. This paper describes
anew language focused on these concepts: LIMP. To be usgful, this new language
isaimed towards users ranging from students to system adminigtrators. LIMPwas
designed for ease of use and speed. This interpreted language was implemented in
the fdl of 2002 and an overview of the implementation is given here. LIMP
succeeds by accomplishing dl its design gods and executing programs at speeds
comparable to or better than established languages. The reault is a language for
students of computer science and programmers of dl skill levels.

1 INTRODUCTION

Withcomputersincreasing pervas veness, computer science curriculum must be designed
with mgors and non-mgors in mind - this indudes mathematicians, physicists, and
businesspeople who dl make heavy use of computers. Recent college graduatesin these and
many other fields are called upon to automate repetitive tasks using the computer. In most
undergraduate colleges, acomputer science survey courseisoffered. Thiscourse usudly covers

" Copyright © 2003 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee al or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and noticeis given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

96

CCSC: Southeastern Conference

word processing, databases, HTML and grgphic desgn but cannot address dl the possble
software combinations in use in industry today. By integrating a programming for
non-computer-science-maj ors course intoundergraduate curriculum, studentsgainfundamental
ingght into computer sciencethat will benefit themas they undertake computer related tasksin
the workplace.

LIMP, the new language designed by the author of this paper, is the tool for teaching
such a class. While C, C++ and Java are often too complex to teach basic programming
principles, LIMPisnot. Withitssmple, English-based grammar, the concepts of programming
(looping, control structures, input/output) can be taught without getting bogged down in the
details of a particular programming environment. While the LIMP project wasinitidly amed at
those programmersinsearchof amulti-purpose development tool, it hasevolved into something
that canbe directly incorporated into undergraduate computer sciencescourses. Theinitid gods
of the project can be found later in section 3.

LIMPisaninterpreted language. An interpreted language is one in which programs are
executed immediatdy after it is parsed without generating any intermediate or object code. This
isthe opposite of acompiled language wherethe high-level source code is compiled into object
code and then executed. The LIMP interpreter was designed from the outset for ultimae
portability. The C and C++ LIMP source code will compile on any system with a C++
compiler and support for the Standard Template Library. The interpreter waswrittenand tested
on the Solaris operating system and was aso compiled for testing under the Red Hat Linux
operating system.

The remainder of this paper has the fdlowing format: Section 2 describes other's
contributions to interpreted programming languages and how they impacted the design and
implementation of LIMP. Section 3 ligsthe origind gods of the LIMP programming language.
Section4 provides examples of tasks where LIMP would be the programmer'stool of choice.
Section 5 describes LIMP's design and implementation. Section 6 describes the results of the
benchmarks to compare LIMP's speed with that of other smilar interpreted and compiled
languages. Section 7 describes how the interpreter will be improved in the future.

2 RELATED WORK

As computing time becomes less expengve and processor speeds increase, computer
scientigts are becoming less concerned with the amount of time needed for agorithmsto run,
and more concerned with high leve language constructs that make dgorithm implementation
eader. For this reason, many interpreted languages have been developed inthelast 10 years
most, notably Perl, PHP and Python.

One of thefird interpreted languages to gain widespread acceptancewas Perl. Invented
in1987, "Perl isa[gc] interpreted language optimized for scanningarbitrarytext files, extracting
informationfromthosetext files, and printing reports based onthat information. 1t'salso agood

'LIMPisarecursvely defined acronym for LIMP Is My Program.

97

JCSC 19, 3 (January 2004)

language for many system management tasks."[4] Larry Wall, Perl'sinventor, goes onto say
that Perl was designed to combine the best features of C, sed, awk and sh. Perl isnow the
most popular interpreted programming language available for both the UNIX and Windows
operating systems. Because so many people use Perl, many enhancements have been made
over the years - most notably the support for object-oriented (OO) programming. While this
isimportant today as programmersrey heavily on OO support, it results in an interpreter with
more source code and dower responsetimesfor trivia programming tasks that do not require
OO support. Over the years Perl devel opers have adopted the mantrathat there isadwaysmore
than one way to perform any operation. Unfortunately, not every method is fast or works the
way the programmer expects. Often this leads to longer development time and dower running
code. Since Perl was developed at the peak of C's popularity, many of the congtructs in Pexl
are Smilar to those in C and do not lend themsalvesto high levels of source code abstraction.
This makes Perl adifficult and intimidating language for novice programmersto learn and use.
Ovedl, Perl is a good language for rgpidly prototyping complex applications, but is not as
impressve for smaller gpplications that need to run many times, asfast as possible. Section 6
shows a comparison of timing results between LIMP and Perl.

Riding Perl'scoat tails, many smilar languages were developed in the mid to late 1990s.
Themost notable isPHP. "PHP is anHTM L -embedded scripting language. Much of itssyntax
is borrowed from C, Java and Perl with a couple of unique PHP-specific features thrown in.
The god of the language is to dlow web developers to write dynamicaly generated pages
quickly."[2] The language lives up to that description: its fast execution times have made it the
primary languege at large Internet companiesinduding Y ahoo! . However, PHP is not good for
command line (or offline processing) work. It was designed as a web programming language,
and the more recent versons are geared towards that market. Smilar to Perl, what started off
as a gmdl set of CGI scripts? has turned into an OO programming language. Findly, PHP's
gyntax of combining executable statements into HTML (content markup) makes for very
unreadable program source code. Overdl, PHP is an expressive language for dynamic web
content, but cannot be effectivdy used for offline processing, automation or command line
scripting.

Like Perl and PHP, Python is an interpreted language. Python combines innovative
programming language € ementslike exceptions and modules dong with time-tested concepts
such as classes and dynamic data types. [8] As a standaone language, Python is good for
system adminigtration tasks. However, according to the officia Pythonwebsite, the real power
of Python lies in its &hility to interoperate with heterogeneous environments. [10] "When
augmented with standard extensions ... Python becomesa very convenient "glue’ or "steering’
language ..." [10]

The author of [10] goes on to say that severd packages make Python strong enough to
perform gatistica caculations and even Fourier trandforms. This seems like overkill for those

2'The Common Gateway Interface (CGl) is a standard for interfacing externa
gpplications with information servers, such as HTTP or Web servers.” [1]

98

CCSC: Southeastern Conference

who are attempting to do smple and fast file, text, or number manipulaion. Among non-Python
programmers, there is aconsensus that Python's syntax of indentationto create blocks of code
is cumbersome. Python programmers refute this by saying the trangtion to this style of
programming is easy and only takes a matter of hours.

There are many other smilar languages, and some are more sophisticated thanothers. For
ingtance, Ruby [11] is becoming apopular choicefor scripting. No matter how many different
scripting languages andly zed, the bottom line isthat each language is designed to meet a specific
god. Perl isfor rapid prototyping. PHP is for web development, and Pythonisfor steering the
interaction between multiple programs with easy to construct GUI components.

3 GOALSFORLIMP

The gods of this language were sat forth to fill avoid left by current programming tools
and cregte alanguage without the limitations of those dready available.

* LIMP'ssyntax must be Smple enough for novice programmer to learnquickly and robust
enough for the expert programmer. Usng more time to learn the syntax of a languege
leaves less time for the art of program design. With Perl and its C-like syntax, novice
programmers can get logt trying to creste even asmple script.

« LIMPmus berdatively quick for al operations. Thisisnot to say thet al operations will
be fadt, just that the execution time for dl operations must be respectable. With the
languages detailed above and ther support for OO congtructs, the speed for smple
operations, such as the cregtion of arrays, suffers. In the results section (section 6), the
reader will notice that thisis an areawhere our fina product excelled in some areas and
lagged in others.

» The language mug support file input and output. Additionaly, there must be easy
congtructsto openfile handlesand ether read fromor writetothem. InPerl, the construct
to open any kind of file handle is open The parameters differ depending on the way one
wants to access the file, and are very smilar to the symbals used in bash®. In LIMP,
there are multiple congtructs for opening files for read or write. This method makes it
easer for programmersto be sure they have opened the file properly and that they are not
going to accidentally overwrite important data by transposing a< with a>.

« Thelanguage must have built-in congtructs that scale. This means that the language must
have asmdl number of well-designed and wdll-implemented functions and constructsthat
can be used to create other commonly used functions. By avoiding feature overload, the
programmer can ensure that the congtruct he is usng is the fastest, cleanest way to
accomplish a task. As was mentioned in the description of Perl above, the multitude of
built-in congtructs can lead to confusion about which isthe eesest and fastest to use for
agiven problem. In the case of PHP, the online references for the built-in functions are

*BASH (Bourne Again SHell) isthe GNU verson of the origind UNIX shdll named sh.

99

JCSC 19, 3 (January 2004)

helpful, but can sometimeslead the programmer astray asto what is the proper function
or congtruct to use for a particular gpplication.

e The LIMP interpreter must be portable enough to support all architectures with an
available C++ compiler. If the tool isto be effective for the end programmer, the source
code must run regardless of machine type. The author must have the freedom to take a
program designed for one platform to another platform should the need arise.

« Thetool should support interaction with the operating system. A language is usdessif it
cannot take advantage of operating system level functions.

4 MOTIVATING EXAMPLES

The primary god of the project, as mentioned earlier, was to create alanguage for those
interested inlearning the fundamental's of computer science. Besidesthis academic application,
there are dso a number of ways a language like LIMP could benefit both novice and
experienced programmers. This sectionoutlinesafew of these. The source code corresponding
to these problems can be found in [5].

The Spreadsheet

In today's Microsoft-dominated desktop, most spreadsheets are created in Excd. While
good for organizing data, the ability to perform operations on certain subsets of datain Exce
is lacking. Written in the only programming language available, Visud Basic for Applications,
these cdculations can be dow and cumbersome. However, with LIMP's built-in substring
operation, a number of standard functions, and easy accessto files, these operations can be
performed quickly.

TheEmail List

As corporations and departments grow, email servers become outdated and must be
replaced. As aresult, there exists a need to generate anew list of email addressesin the form
firstnane. | ast nane@ai | server. exanpl e.com from a lig of emal addresses
in the form fi r st nane. | ast nane@xanpl e. com This seems like a trivid task, but the
tools are not available for such asmple trandation: A Perl script could do the job, but having
atool like LIMP, which is designed specificadly for atask like this, would be idedl.

Shell Calls

Many tasksinthe UNIX environment can be completed by making a series of shell cals
with varying parameters. An obvious choice for suchatask would be a shell script. However,
as this programmer learned, using bash as a programming language is very difficult. Its
column-oriented parsing and mathematical versus text mode processing of statementsisdifficult
for many people to understand. However, with the systen() cdl in LIMP, a sl cdl can

100

CCSC: Southeastern Conference

be executed and the output from that command can eedly be stored in a variable for later
meanipulaion.

Web Pages

Today, more than ever, people who do not have programming skills are attempting to
publish dynamic World Wide Web homepages. Much to their chagrin, they must learn a
language like Perl, PHP or Python to create such aweb Ste. These languages are too Smilar
to something like C (areal programming language) and offer little in the way of English based
congtructs. In LIMP, the use of English words to replace cryptic symbols common in other
programming languages makes it easy for the non-programmer to create working scripts
quickly. Using the provided CGI include file, access to any of the functions of PHP, Perl or
Python designed for web site design are available to the LIMP programmer thereby creeting
a convenient language for the novice programmer to create dynamic web content.

In these four examples, plus the overal goa described in the paper's introduction, the reader
can see there are plenty of practica gpplications for a niche language like LIMP.

5 DESIGNAND IMPLEMENTATION

The LIMP syntax isbased partly onitsC, C++ and Perl ancestorsand partly on atheory
that English-based operators will makeit easier for both experienced and novice programmers
to create working code that is sdf documenting. For a complete description of LIMP syntax,

please see[5]. Theinterpreter for thislanguage wasimplemented inthe fal of 2002 usng C and
C++.

A complete description of the syntax and features of the language is beyond the scope of
this paper. However, it isimportant to note a few features that make LIMP a suitable choice
for classroom use.

Design and Features

1. AllLIMPvariables must be declared before they can be used. Not only doesthisreduce
the risk of typos causng latent errors, but it dso promotes good coding practices and
leads to self-documenting code.

2. LIMP supports a single data type. Depending on the context of the operation, the data
type can represent an integer, double, float, boolean, or gtring. Operationa contexts in
LIMP are dgraightforward so there is little possibility of inadvertently performing a
meaningless operation.

3. LIMP supports arrays. To avoid problems with memory dlocation, LIMP arrays are
dynamicdly sized, and bounds are always checked for validity before performing an

101

JCSC 19, 3 (January 2004)

access or write. This means that the formerly devastating off-by-one memoryaccess error
will no longer crash user programs.

LIMP supports functions. While most languages today support functions, LIMP's
functions can be used to emphasize the technique of modularization.

LIMP supports various control structures. All LIMP control structures require { and }
braces to contain the code to be conditionally executed. While this may increase typing,
it has the advantage of minimizing mismatched if/else pairs and increasing code readability
by grouping logicdly related statements.

o if ... dse... LIMP includes support for the standard if statement with unlimited
nesting.
» while, do ... while LIMP includes support for awhile, and do ... while loop.

» foreach LIMP supports this looping structure for the express purpose of iterating
through al the entriesin an array. The concept of a foreach loop issmple: iterate
through dl entries in an aray, assgn the value from tha entry into a
programmer-specified varigble and then execute a block of code. Upon completion
of this block's execution, the process repeats for dl the entriesin the array.

LIMP supports native access to environment varigbles. For every defined environment
variable, a identically named LIMP varigble is created at program startup. Using the
built-in keyword defined, the programmer candetermine whichenvironment variablesare
currently defined without worrying about referencing undeclared variables.

LIMP supportsindudefiles. The obvious consegquence of this capability is to encourage
code reusability and modularity.

LIMPincludesabuilt-indebugger. Executinga L IMP program within the debugger alows
the programmer to step the throughthe programand access variable contents. Thissmple

but powerful debugger will benefit both experienced programmers and students of

computer science.

I mplementation

Intheinterest of space, implementationdetails of the LIMP interpreter have been omitted.

A detailed description of the code for the interpreter can be found in [5]. However, a brief
description of executionflow of the interpreter as a programis executed may help contextuaize
the following quantitative results.

1
2.

102

The standard input and output channels are created.

The scope where "man’" variables will be stored is created and entered into the lig of
active scopes.

If thisis adebugger indantiation, the debugger variables are initiaized.

CCSC: Southeastern Conference

4. Command line arguments are checked and proper variable initialization occurs. LIMP
supports commeand line argumentsto disable runtime warnings, specify afileto find LIMP
code to execute and print a helpful message about LIMP's usage.

5. Control is passed to a yacc-generated parser. This parser relies on a flex generated
lexica analyzer to tokenize LIMP source code [3] [7] [6]. During this time, the code is
checked for syntax errors and converted into an execution tree. If any errors exist, they
are reported and the interpreter hdts. Otherwise, the interpreter continues.

6. The statements of the body of the program are compiled into an executable list and
interpreter control ispassedto the program eva uationengine. If during executionrun-time
errors occur, these errors are reported and the interpreter exits.

7. Upon successful completion of program execution, the interpreter exits.

Student Opportunities

Aswell as atool for teaching computer scienceto non-computer scientists, LIMP offers
excdllent learning opportunities for advanced computer science students. The source code for
the interpreter is open and available upon request. The documentation contained in the source
code provides enough information for the interested programmer to make contributions. With
over 5000 lines of code, modifying the LIMP interpreter provides a great starting point for
students interested in compiler design. Specific suggestions for student work can be found in
the Future Work section.

6 RESULTS

Inorder to quantitetively judge the find product, a set of benchmarkswas created. These
benchmarks were designed to judge LIMPs speed relative to established programming
languages, compilersand interpreters. For each of the five benchmarks, results were gathered
on a 250 MHz Sun4u mechine running Solaris 5.8. In order to account for operating system
overhead, the amount of time to execute the * shell command from indide the timing program
usng the system() function was included in the results tables. Therefore, the actual amount of
time to complete a benchmark can be inferred by subtracting the "Shell” time from the LIMP,
Perl or C++ execution times in the tables below. In certain examples where a benchmark
programwas executed only once, the time to execute the : command was not included because
it did not sgnificantly effect the tota running time. The C++ benchmarks were compiled using
g++ and optimized with -O2. The full source code for the benchmark programsisin [5].

“The: isthe null shell command. It can be compared to the empty statement ; in C.

103

JCSC 19, 3 (January 2004)

Benchmark Description
Recursion The summation of the munbers 1 to 100 recumsively.
Matrix Multiplication | Multiplication of a 50 by 50 matrix.
Function Calls Execution of a function.
Arrays Creation and manipulation of arrays.
Spreadsheet “Substring” data from a large file.
Benchmark Program Real User | System
Recursion Shell 7.764s | 2.T4s 4.36s
LIMP 41.867s | 23.89s 14.31s
Perl 38.046s | 18.91s | 16.94s
Matrix Multiplication C 0.037s 0.02s 0.02s
LIMP 16.1288 | 15.15s 0.81s
Perl 1.354s 1.33s 0.02s
Function Calls Shell 8.043s 2.90s 4.508
LIMP 22.887s 7.34s 12.61s
Perl 34.986s | 16.00s | 16.88s
Arrays Shell 6.454s 2.11s 3.76s
LIMP 20.747s | 6.39s 11.78s
Perl 32.156s | 14328 | 15.35s
Spreadsheet C++ 58.1108 | 43.490s [0.29s
LIMP 30163 | 22841 1.53s
C++ Optimized | 11.131s | 9.93s 0.25s

The matrix multiplication operations take anon-trivid amount of timeto completein LIMP
because each value is stored as aC++ dring; this string must be converted to a double before
an operation can be performed and then the result must be converted back to a gring. The
substring operations in the Spreadsheet benchmark extract 30 characters from every line of a
30-megabyte file. Unfortunately, Perl results cannot be included for this benchmark. Perl's
peephole optimizer completely diminates the call to the subgtring function in our benchmark
code. [9] Theresultsfromthe Array benchmark prove aninteresting point: the LIMP interpreter
isable to handle sparsely popul ated n-dimensiond arrays faster than other interpretersbecause
of itsunderlying linked lig implementation. The Function Class example showsthat, cdlingand
executing afunction in LIMP isfast rdlative to other interpreters.

Objectively viewing these results demongtrates that the LIMP interpreter satisfies the
design god wherein dl operations are interpreted relatively (to other languages) quickly.

7 FUTURE WORK

The mogt prominent interpreters today have been developed over a period of years. In
Perl's case, development started in the late 1980s. For PHP and Python, development started

104

CCSC: Southeastern Conference

in the mid 1990s. LIMP development started in the fall of 2002. In addition to the areas of
possible improvement mentioned previoudy, there are other ways to improve LIMP:

Eliminate the String Obj ect

The C++ dring object isat the heart of dl variables, operations and literds. The overhead
to carry around a complex class like thisin so many structures dows down the interpreter.
Additiondly, there are numerous cals to convert the string class object to a standard C string.
Therefore, if the string object can be changed to anarray of characters, asgnificant amount of
memory would be saved by not transferring an entire object from place to place and a
sgnificant time savings would result as cals to convert the C++ gtring object to aC String could
be removed.

Implement Database Connectivity

As more datais migrated to databases, alanguage must have the capability to read and
write from these data stores. LIMP needs this support. Initially support for the most popular
databases will be added e.g. MySQL. This support will comein the form of functions suchas

nysql _connect () or nysql _query().

I mprove Speed

The methods used to execute LIMP programs could be more efficient. Withan extensve
audit of the source code, these problem areas can be identified and fixed to improve the overal
speed. Additiondly, the sringbasefor everyvariable, or valuable in LIM P causes mathematical
cdculationsto be dow (as noted in the matrix multiplication example in section 6). With the
addition of a double to store the current mathematical representation of the dring in dl
sructures, repeated cdls to at of () will be rendered unnecessary and an increase in speed
should follow?.

Remove Overflow Restrictions

Currently, a number in LIMP cannot be larger than 1x10°. Since LIMP is primarily a
string based language, thisis not a problem. However, as the generd use of LIMP increases,
it may be used for mathematical cal culations that require support for larger numbersthanLIMP
currently dlows.

SBased on informal tests, the LIMP interpreter will execute mathematical operations
up to 50% faster with this enhancement.

105

JCSC 19, 3 (January 2004)

Socket Connections

The ability for a LIMP program to connect to network resources via handles is an
important future additionto LIMP. Since the handleswere designed as a class, adding another
type of resource (network) should not cause a huge change in the interpreter source code.

Other Enhancements

Because every LIMP variable can be considered a scalar and an array, a specia index
for every varidble could be specified to hald informationabout the use of that variable. If LIMP
had the ability to preprocess source files and extract this information, a program's
documentation could be created automaticaly.

Usersof the LIMPdebugger will a so benefit fromincreased access to behind-the-scenes
information. This indght into the interpreter will help programmers whose complex code is
infested with a subtle bug.

With any project, improvements can always be made. As people begin to use the
language, thisligt of future improvements will surely increase.

8 SUMMARY

This paper has provided a genera overview of anew programming language named LIMP, its
usesand explicated possihilitiesfor futurework. This language featuresasmple syntax, support
for file 1/0, and built-in scalable constructs. Besides the accomplishment of these subjective
gods, the quantitative resultsare promising. LIMP beat or rivaed other programming languages
indl but one benchmark category. The examples of usesfor LIMP show that thislanguage is
suitable for practical problem solving as well as for teaching the art and science of computing.
Overdl, the accomplishment of the design goal's, and combination of subjective and quantitetive
results, shows that LIMP is a perfect tool for the classsroom and indugtry. In the future this
author looks forward to continuing work on this project, and hopes to end up with alanguage
that programmers, non-programmers and teachers dike pick for the variety of problems they
encounter and courses they teach.

Appendix: LIMP Grammar i:t eger_literoal) -
delim=[\t] -?[0-9] +[\.]?[0-9]

noohn I NCLUDE = "incl ude"

ws = {delin}+ c —/l*ncue - ; f .
non_digit_id_char = [_A Za-z] << 0:_») Speci a en) ile
digit_char = [0-9] denomi nat or */

i i i ; _ OPEN_BRACE = "{"
variable_identifier = OLOSE BRACE = "1°
\'$({non_digit_id_char}|{digit_char}) OPEN I_DAREN _'" }
+[0-9A-Z a-z]* L ="

i P - CLOSE_PAREN = ")"

regul ar _identifier = SEM = v
{non_digit_id_char}[0-9A-Z a-z]* ‘_ n
comrent = ("//"|"#"){1}.*$ COWA =",

i ; _ EQUAL "="
st r i ng_ 1 it er al = TILDE = "
SO ATTY)EL -

((YIHM"T)) CPEN BRACKET = [

106

CLOSE_BRACKET = "]"

L | T E R A L =
{string_literal}|{integer_literal}
SUBSTR = "substr"

PRINT = "print"

READ = "read"

DATABASE = "dat abase"

OPENR = "openr"

OPENW = "openw'

CLCSE = "cl ose"

DECLARE = "decl are"

FUNCTI ON = "function"

SYSTEM = "systent

RETURN = "return”

R ="or"
AND = "and"
NOT = "not"

EQUAL_TO = "equal _to"
NOT_EQUAL_TO = "not _equal _t o"
LESS THAN = "l ess_t han"
GREATER_THAN = "greater_than"
GREATER_THAN_OR_EQUAL
"greater_than_or_equal"
LESS_THAN_OR_EQUAL
"l ess_than_or_equal "

UNLESS = "unl ess"

DEFI NED = "defi ned"

EOF = "eof "

IF="if"

THEN = "t hen"

ELSE = "el se"

DO = "do"

FOREACH = "foreach"

WH LE = "while"

ADD = "add"

SUBTRACT = "subtract"
MULTIPLY = "nul tiply"

DI VIDE = "divide"

MOD = "nod"

VAR I D = {variable_identifier}
ID = {regular_identifier}
SYNTAX_ERROR = .

start_synbol
I

program start_synbol

bl ock : program bl ock

el se_bl ock :

program el se_bl ock

cl ose_expr
function_expr
whi | e_expr
if_expr
do_expr
foreach_expr
openr _expr
openw_expr
function_call _expr SEM

program

CCSC: Southeastern Conference

system cal | _expr SEM
decl are_expr

|

|

| ass_expr

| ass_expr_array

| ret_expr

| print_expr

| read_expr

| read_expr_array

| include
include : | NCLUDE LI TERAL SEM
if_expr IF OPEN_PAREN val uabl e
CLOSE_PAREN OPEN_BRACE eval uat ed_bl ock
CLOSE_BRACE

| I F OPEN_PAREN val uabl e
CLOSE_PAREN OPEN_BRACE eval uat ed_bl ock
CLOSE_BRACE ELSE OPEN_BRACE

eval uat ed_el se_bl ock CLOSE_BRACE

do_expr DO OPEN_BRACE bl ock
CLOSE_BRACE VWH LE OPEN_PAREN val uabl e
CLOSE_PAREN SEM

foreach_expr: FOREACH
OPEN_PAREN VAR_I D
OPEN_BRACE bl ock CLOSE_BRACE

VAR_I D
CLOSE_PAREN

whi | e_expr: WHI LE OPEN_PAREN
val uabl e CLOSE_PAREN OPEN_BRACE bl ock
CLOSE_BRACE

function_call _expr: ID OPEN_PAREN
param | i st CLOSE_PAREN

function_call _expr_return: | D

OPEN_PAREN param | i st CLOSE PAREN

system cal | _expr: SYSTEM OPEN_PAREN
val uabl e CLOSE_PAREN
system_call _expr_return: SYSTEM

OPEN_PAREN val uabl e CLOSE_PAREN

print_expr: PRINT ID val uabl e SEM

read_expr: READ ID VAR | D SEM

read_expr_array: READ I D
eval uated_l i st SEM

VAR | D

openr_expr: OPENR | D val uabl e SEM
openw_expr: OPENW I D val uabl e SEM
cl ose_expr: CLOSE | D SEM

function_expr:
bl ock CLOSE_BRACE

FUNCTION ID OPEN_BRACE

partial . partial COWA val uabl e

107

JCSC 19, 3 (January 2004)

param | i st val uabl e partial

decl are_expr: DECLARE var _id_list
SEM
var_id_list VAR_I D COMVA
var _id_list

| VARID

i ndex_|i st OPEN_BRACKET
val uabl e CLOSE_BRACKET i ndex_|i st

| OPEN_BRACKET
CLOSE_BRACKET

val uabl e

eval uat ed_el se_bl ock : el se_bl ock
eval uat ed_bl ock : bl ock

eval uated_li st i ndex_|ist
ret_expr RETURN val uabl e SEM
ass_expr VAR ID EQUAL valuable SEM

ass_expr_array
eval uated_l i st EQUAL val uabl e SEM

VAR _I D

val uabl e val uabl e TILDE and_expr
| and_expr ;
and_expr and_expr AND or _expr
| or_expr ;
or _expr or _expr OR

conpari son_expr
| conparison_expr;

conpari son_expr
EQUAL_TO add_expr

comparison_expr

REFERENCES

| comparison_expr NOT_EQUAL_TO

add_expr

| conpari son_expr LESS THAN
add_expr

| conpari son_expr GREATER_THAN
add_expr

| comparison_expr
LESS THAN OR EQUAL add_expr

| comparison_expr
GREATER_THAN_OR_EQUAL add_expr

| add_expr ;

add_expr add_expr ADD mul t _expr

| add_expr SUBTRACT nul t _expr

| mult_expr ;
mult _expr MULTI PLY
not _expr

| rmul t_expr DI VIDE not_expr

| mult_expr MOD not_expr

| not_expr ;

mult_expr

not _expr

| ECF ID

| DEFINED VAR | D

| SUBSTR OPEN PAREN |ast_resort COMVA
|l ast _resort COMMA |l ast _resort
CLOSE_PAREN

| last_resort;

NOT not _expr

| ast _resort

function_call _expr_return
| systemcall _expr_return
| VAR ID
| VAR_ID index_list

| | ast _resort OPEN_BRACE
val uabl e CLOSE_BRACE

| LI TERAL

| OPEN_PAREN val uabl e

CLOSE_PAREN

[1] CGI: Common Gateway Interface. http://hoohoo.ncsa.uiuc.edw/cgi/intro.ntml, -.

[2] PHP Manual. http:/Mmww.php.net/manual/en/preface.php, 2002.

[3] Alfred V. Aho. Compilers: Principles, Techniques and Tools. Reading, Mass.

Addison-Wesley, 1986.

[4] Elaine Ashton. The

Timeline of Perl and its

Culture.

http://history.perl.org/Per Timeline.html, 2001.

108

[3]

[6]

[7]

[8]

[9]
[10]

[11]

CCSC: Southeastern Conference

William Hawkins. The Implementation and Uses of LIMP.
http://cs.furman.edu/~whawkingResearch-find.ps, 2002.

Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler.
http://dinosaur.compilertools.net/lex, -.

M. E. Lesand E. Schmidt. Lex - A Lexical Analyzer Generator.
http://dinosaur.compilertools.net/lex, -.

Guido Van Rossum. What is Python?
http:/Amww.python.org/cgi-bin/fagw.py reg=showé& file=fag01.001.htp, 1997.

Sriram Sinivasan. Advanced Perl Programming. O' Reilly, 1997.

Aaron Watters. What is Python good for?
http:/Amww.python.org/cgi-bin/fagw.py reg=showé& file=fag01.017.htp, 1997.

Y ukiniroMatsumoto. What's Ruby. http://Aww.ruby-lang.org/en/20020101.html, 2002.

109

